
A New Low-Complexity Entropy Coding Method

Ilya V. Brailovsky, Dmitry A. Plotkin
Department of Computational Mathematics and Cybernetics

Moscow State University, Moscow, Russia
Evgeny M. Kravtsunov

The Institute of Microprocessor Computer Systems,
Russian Academy of Science (IMCS RAS), Moscow, Russia

Abstract
In this paper we introduce a new method for low-complexity
entropy coding, which we call Generalized Interval
Transformations coding. It gives high compression rates (very
close to the entropy) without using complex arithmetic operations
like divisions or multiplications.
We will discuss two algorithms derived form the Generalized
Interval Transformations method. The first algorithm is a low-
complexity online algorithm, which proved to be very efficient
for compression of Intermediate Representation data for E2k
optimizing compiler. The second algorithm has the same low
computation complexity however works at a greater algorithmic
complexity and allows reaching coding speed (encoded bits on
input byte) 2,15 on Calgary Corpus.
Keywords: data compression, inversion frequencies,Generalized
Interval Transformations, Rice-Golomb codes.

1. INTRODUCTION

The coding technique of Generalized Interval Transformations
(GITs) is based on generalization of the known “inversion
frequencies” algorithm [1]. GITs operate on blocks of data and
convert data to sequences of geometrically distributed integer
numbers. Integer numbers are further compressed by the famous
Rice-Golomb [2] codes and outputted for forming the bitstream.
The point is that for Rice-Golomb codes it’s necessary to know
some statistical information. Instead of using Rice-Golomb codes
we can use some universal codes without these requirements. This
strategy has been studied in [3] and it gives good results. In this
paper, however, we propose an algorithm for online parameter
estimation of Rice-Golomb codes resulting in better compression
efficiency as compared to a universal integer numbers coding.
The paper is structured in the following way: first we give a
definition for the whole family of Generalized Interval
Transformations. Then we confine our study to online Adaptive
Interval Coding algorithm and show the results and possible
applications of this algorithm. After that we define Binary
Interval Coding (a subfamily of GITs) and show the results of the
coding on Calgary Corpus test suite.

2. GENERALIZED INTERVAL
TRANSFORMATIONS

To define Generalized Interval Transformations (GIT) we first
define Partial Generalized Interval Transformations and using the
definition of Partial Generalized Interval Transformations we also
define Full Interval Transformations as presented in [4].

2.1 Partial Generalized Interval Transformations
Let S be a message in alphabet , and let us split into
two nonempty subsets and so that .

}{ ia=A

2A
A

1A 21 AAA ∪=

Definition 1. We will call Partial Generalized Interval
Transformations (or PGITs) the transformation of S into three
other sequences:

1) Sequence S , which consists of letters from subset in
message S; in other words, is a message S with letters
from the subset “struck out”.

1 1A

1S

2A

2) Sequence S , which consists of letters from subset in
message S; in other words, is a message S with letters
from the subset “struck out”.

2 2A

2S

1A

3) Sequence S of intervals between sequential entries of
letters from in S.

I

1A

For example, let },,{ cba=A , S = aabcbbccabbaca, }{1 a=A
and },{2 cb=A

I

. Then the Partial Interval Transformation
produces the following sequences: S = aaaaa, = bcbbccbbc
and S =0,0,6,2,1.

1 2S

2.1 Full Generalized Interval Transformations
With the aid of PGITs it is possible to construct many different
coding algorithms by choosing different splits of the original
alphabet and applying different algorithms for further
compression (transformation) of the sequences S , and .
For instance, it is possible to encode sequences , by
applying a PGIT to them and splitting subsets and until
they contain only 1 letter.

1

1A

2S

1S
IS

2S

2A

Definition 2. Full Generalized Interval Transformation (or FGIT)
is a composition of Partial Interval Transformations where both of

 and are transformed by a Partial Interval Transformation
if the corresponding , i=1,2 contains more than 1 letter.

1S 2S

iA

We will call both Partial and Full Generalized Interval
Transformations as Generalized Interval Transformations (GITs).

3. ADAPTIVE INTERVAL CODING
If we take consisting of a single letter for each stage of a
FGIT we will get exactly the “inversion frequencies”
transformations [1]. By definitions 1 and 2, GITs (and “inversion
frequencies” in particular) operate on blocks of data. In [5] for
“inversion frequencies”, however, a fast online algorithm for
forward and backward transformations is proposed. We take this

1A

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

algorithm as a basis for our coding algorithm. But instead of
arithmetic encoding which is proposed in [5] as the final stage of
compression, we use fast multiplication-free algorithm of Rice-
Golomb codes, which exploits only addition and shift arithmetic
operations. For maintaining online property of the fast
transformation algorithm we propose to use the following strategy
of estimating Rice-Golomb codes parameter k for intervals
corresponding to the given letter: for encoding next interval use

 where m is the average length of all previous
intervals for this letter. We prove that this algorithm of adaptation

gives in average

 mk 2log=

)1(
N

O

)

)(niA

 increase in code length against the

optimal Rice-Golomb code selection (N is the length of S). The
combination of the fast algorithm for “inversion frequencies”
transformation and adaptation for Rice-Golomb codes and some
adaptation on the order of choosing letters (adaptation on
choosing subsets) will be referred to as Adaptive Interval
Coding (AIC).

1A

}1,0{=A

)1(+n
i(ni), =A

)(nAa∈
0

One of the possible implementations of AIC algorithm was made
for the E2k optimizing compiler [6]. Intermediate Representation
(IR) of this compiler for a typical task consists of stored language-
specific structures, binary and text data with non-homogeneous
statistics. IR data typically are not very big, but for some tasks it
is necessary to built large IR files for global analysis. In order to
keep working with IR data in memory instead of swapping data to
disk the compiler needs a very fast and very efficient compression
algorithm. With the aid of AIC it’s possible to achieve coding
speed 3.57 for SPECint92 IR data. “gzip”, for instance, reaches
coding speed 2.66 on the same files but works several times
slower which is unacceptable from the practical point of view.
Comparison with several other algorithms leads us to conclusion
that AIC gives the best balance between coding efficiency and
compression rate among a wide range of coding methods for the
task of compression of E2k IR data.
Another possible use of AIC is to apply it to the output from
Barrows-Wheeler Transformation (BWT) [1]. In this case coding
speed 2.49 can be reached on Calgary Corpus test suite. This
compression rate is smaller (about 10%) than that for a typical
BWT based encoder, but AIC has less complexity than any other
online BWT based algorithms.

4. BINARY INTERVAL CODING
Let be the binary alphabet and S be a message in this
alphabet. Let be all binary words under with the
length n. Now we can construct a split of alphabet into

subsets of in the following way: a belongs
to if and only if the number of entries of “0” in

 is equal to i. We will call the GIT, which corresponds to
the abovementioned split of the alphabet , Binary Interval
Coding (BIC) with parameter n. It is proved in [4] that the
redundancy of such coding decreases while n grows in case of
sources without memory.

(nA

n,...,

}1,0{=A
A
)(nA∈

)

)(n

(nA

We’ve implemented BIC algorithm in software and tested it on
Calgary Corpus test suite. With n=2 it gives coding speed 5,06,
with n=16 - already 2,35, and with n=24 - 2,15. Algorithmic
complexity of the computations is of course growing with the
increase of n. Today’s best coding speed 2,08 [7] is better than the
best results of BIC. But these first results are very promising

because a good many improvements in the statistical modeling for
source data are left for future.

3. CONCLUSION

Generalized Interval Transformations method proves to be
efficient both for building low-complexity algorithms and for
building high efficient universal compression algorithms. An
example of low complexity method is Adaptive Interval Coding
algorithm, which is the best-balanced compression algorithm for
E2k compiler IR data. Binary Interval Coding gives promising
high compression rates at the first implementation resulting
coding speed 2,15 on Calgary Corpus and comes close to the
world’s best compression results.

4. REFERENCES

[1] Arnavut Z., Magliveras S. S. Block Sorting and Compression
// Proc. IEEE Data Compression Conference, Snowbird, Utah,
1997.
[2] Golomb S. W. Run length encoding // IEEE Transactions on
Information Theory, 1966, vol. IT-12, №7. – P.399-401.
[3] Brailovsky I. Flag Inversion Frequency Coding //
Information Technologies, Moscow, published by New
Technologies, 2002, №.11. - P. 19-25 (in Russian)
[4] Brailovsky I. Coding binary sources without a memory with
a generalized interval transformation. // Chebyshevskii spornik,
2003, v.4, № .11. - P. 19-25 (in Russian)
[5] Kadach A. Efficient algorithms of lossless text data
compression. PhD thesis, Siberian RAS department. -
Novosibirsk, 1997 (in Russian).
[6] Babayan B. A. E2k Technology and Implementation. //
Proceedings of the Euro-Par 2000 - Parallel Processing: 6th
International, Jan. 2000, v. 1900/2000. - P. 18-21.
[7] Shkarin D. Improving the efficiency of PPM algorithm //
Problems of Information Transmission, 2001, 34(3). – P. 44-54

About the authors

Ilya V. Brailovsky is a researcher at Moscow State University,
Department of Computational Mathematics and Cybernetics. His
contact email is brail@mcst.ru.

Evgeny M. Kravtsunov is a Ph.D. student at Institute of
Microprocessor Computer Systems, Russian Academy of Science.
His contact email is ekrav@mcst.ru.

Dmitry A. Plotkin is a 5-th year student at Moscow State
University, Department of Computational Mathematics and
Cybernetics. His contact email is darksun@mail.ru.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

mailto:ekrav@mcst.ru

	INTRODUCTION
	GENERALIZED INTERVAL TRANSFORMATIONS
	Full Generalized Interval Transformations

	CONCLUSION
	REFERENCES

